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1) Datasources

Yeast two−hybrid interactions 
957 interactions were taken from Uetz et al1, 4549 interactions from Ito et al2. This yielded a
total of 5127 high−throughput yeast two−hybrid interactions involving 3579 proteins
(overlapping interactions were counted only once, homotypic interactions were not counted). 

Purified complexes
The two datasets based on systematic purification of protein complexes3,4 are the largest
interaction datasets to date, which is why we considered them separately. We focussed on the
filtered datasets (both groups removed ’sticky’ proteins and components of the ribosome), and
assigned connections between all proteins present in a purification. Apart from filtering, we
considered only the raw data before any manual curation or complex assignment. The data are
available as supplementary material from the respective publications, and for the HMS−PCI data
also from http://www.mdsp.com/yeast/MDSP−Nature10Jan02−YeastComplexes.txt
In the HMS−PCI approach, the same bait was occasionally purified more than once, often under
different conditions (e.g. with or without DNA−damaging agents). We chose to collapse such
repeated purifications of the same bait into one experiment. We verified that this approach has no
major influence on the results present here (When keeping these purifications separate, the
number of interactions goes down from 33014 to 31048. However, the coverage of known
interactions also goes down somewhat from 668 to 665 interactions, as does the contribution to
the overlap from 1997 to 1971 interactions.)

In silico data 
This dataset contains contributions from three different methods. 
A) conserved gene neighborhood5,6 − we searched 42 completely sequenced genomes for
instances of conserved neighborhood between genes. We required two or more genes to have the
same orientation on the chromosome and to be in a ’ run’ with intergenic regions of no more than
300 bp5. Additionally, we required corresponding evidence (for orthologous genes) in at least one
other, diverged organism. 
B) co−occurrence of genes7,8 − For each entry in the orthology−database COG9, we recorded the
pattern of occurrence among 42 completely sequenced genomes. We compared these patterns and
recorded a putative functional interaction between those whose mutual information10 was higher
than 0.5 (close matches to the 13 most frequent patterns were ignored, as they are mostly
phylogenetic). 
C) Gene fusion events − we detected gene fusions by the presence of a gene in more than one
COG cluster. Single fusion events were considered significant. 
The methods outlined above yield interaction predictions between orthologous groups of genes,
not individual genes. We mapped this to individual yeast genes using the COG database, by
expanding links between two COG clusters to links between all yeast genes in these clusters.
Some COG entries contain a large number of yeast−proteins (gene families expanded in
eukaryotes), so a cutoff was chosen in order not to allow more than six links between similar
yeast genes for two COG clusters. 
A total of 7446 interaction predictions are contained in the in silico dataset (6387 from conserved
gene neighborhood, 358 from gene fusions, 997 from co−occurence of genes, the predictions



overlap). For gene fusions and co−occurence, parameter choice was less inclusive than in ref 11,
which is reflected in a much lower coverage. However, this leads to a somewhat higher accuracy.

correlated mRNA expression 
This dataset is based on two large, genome−wide surveys of mRNA expression in yeast. One is a
compendium of gene expression under 300 different cellular conditions (ref 12, diverse
mutations and chemical treatments), the other is a study of the mitotic cell cycle13, in which the
status of gene expression is measured at 17 different time−points in synchronized cultures of
yeast. 
All mRNA levels were converted to log−ratios (natural logarithm of the ratio of measured
expression by reference expression), and subjected to z−score normalization (which ensures that
the mean of all values is zero and the standard deviation one). We fused both datasets, yielding
317 measurements per gene. For all possible pairs of genes, we then computed the Pearson
correlation coefficient to measure the similarity of their expression profiles. All pairs having a
similarity above a given cutoff were connected by a putative interaction. The cutoff was chosen
to provide a compromise between coverage and accuracy (in figure 2, several different cutoffs
are plotted. For figure 1, the cutoff was 0.675). 

Genetic interactions 
295 synthetic lethal interactions from the first high−throughput study on genetic interactions in
yeast14, plus an additional 591 synthetic lethal interactions parsed from the MIPS database
(ref 15, see http://mips.gsf.de/proj/yeast/tables/interaction/genetic_interact.html) 

2) Functional categor ies (ad Figure 1)

We assigned each yeast ORF to one of 12 broad functional categories (or to the category
’uncharacterized’ ) using the hierarchical classification of gene function performed at MIPS15 as a
template (see http://mips.gsf.de/proj/yeast/catalogues/funcat/index.html). Genes that were
annotated in more than one category were manually placed into just one. Some MIPS categories
were fused for conciseness. 

The following MIPS−categories were used:
category Description Original MIPS category

E energy production energy
G aminoacid metabolism aminoacid metabolism
M other metabolism all remaining metabolism categories
P Translation protein synthesis
T Transcription transcription, but without subcategory ’transcriptional

control’
B transcriptional control subcategory ’transcriptional control’
F protein fate protein fate (folding, modification, destination)
O cellular organization cellular transport and transport mechanisms
A transport and sensing categories ’transport facilitation’ and ’regulation of /

interaction with cellular environment’
R stress and defense cell rescue, defense and virulence
D genome maintenance DNA processing and cell cycle
C cellular fate / organization categories ’cell fate’ and ’cellular communication /

signal transduction’
and ’control of cellular organization

U Uncharacterized categories ’not yet clear−cut’ and ’uncharacterized’
For the full list of category assignments, see Table S1.



3) Glycine decarboxylase

The glycine decarboxylase complex is a multienzyme complex needed when glycine is used as a
one−carbon source. It is under tight transcriptional control, and the key components GCV1,
GCV2, and GCV3 are induced only when there is excess glycine and cytoplasmic 5,10−CH2−
H4−folate levels are low16 . This is presumably not the case under the conditions used for the
large−scale purification of complexes, which may be an explanation why the complex is not
detected (GCV3 was TAP−tagged and failed to present other members of the complex).
The three components can be confidently linked, however, using three different lines of
evidence: a) All three genes repeatedly occur next to each other in prokaryotic genomes, forming
an operon in seven diverged species. b) they show a very similar phylogenetic distribution:
whenever one of the genes is missing from a genome, the other two are also absent. This is the
case for a total of 17 genomes, many from organisms with a parasitic lifestyle, but also from
three archaea living under extreme conditions. c) microarray experiments in yeast confirm that
the three genes are closely co−regulated transcriptionally, even though they are not in close
neighborhood to each other on the genome in yeast. 

4) The PPH3 protein

The PPH3 protein is a serine/threonine phosphatase related to the PP2A family of
phosphatases17,18. There are several such phosphatases in the yeast genome; very little is known
about PPH3. Through high−throughput interaction data, this phosphatase can be confidently
linked to two proteins of unknown function, YBL046W and YNL201C. It is found together with
them in four independent purifications, and the two unknown proteins are also linked through
one two−hybrid interaction (only the Ito−core set is shown). Other proteins are also found linked
to this core, however not consistently. It is unclear whether these are false or true positives, and
some are themselves linked to yet other proteins (not shown). From high−throughput data alone,
it is difficult to say whether the complex consists of three or more than three proteins. 

5) Reference set / benchmark (ad Figure 2)

We assembled a reference set of known interactions from two catalogs of protein complexes in
yeast. One (http://mips.gsf.de/proj/yeast/catalogues/complexes/index.html) is maintained at
MIPS, the other can be accessed free of charge for academic users at http://www.incyte.com/ or
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http://www.proteome.com/ (Bioknowledge database − YPD19). We assigned binary interactions
between all proteins participating in a complex. Where complex annotation was hierarchical, we
stayed at the lowest level of hierarchy, i.e. we only considered subcomplexes and not larger
assemblies. 8852 interactions (involving 999 proteins) were derived from the MIPS complexes,
and we complemented these with 2055 additional interactions (involving 309 proteins) from
YPD − a manually retrieved subset of their interaction data − bringing the total to 10907
interactions involving 1308 proteins. 
For the benchmark, we compared binary interactions contained in the individual datasets against
the binary interactions in the reference set. For the purified complexes, this meant assigning
binary interactions between all members of a complex. 

As an alternative, we also followed the approach taken in the HMS−PCI study − to assign only
interactions between the bait and the associated proteins, but not among the associated proteins.
We find that this leads to higher accuracy−values for both the HMS−PCI and the TAP datasets,
but concomitantly to a lower coverage, see below. 
Additionally, we repeated the calculations from yet another angle − we considered only
interactions where proteins A and B are actually present in the reference set. This leads to still
higher accuracy values, but fails to take into consideration more then 60% of the available data
for each dataset.

dataset (interactions) Accuracy Coverage

TAP (all interactions) 12.5 % 21 %
TAP (bait interactions only) 27.8 % 8.5 %
TAP (within reference set only) 40.5 % not applicable
HMS−PCI (all interactions) 2.0 % 6.1 %
HMS−PCI (bait interactions only) 6.8 % 2.3 %
HMS−PCI (within reference set only) 14.2 % not applicable
Yeast two hybrid (all interactions) 3.7 % 1.7 %
Yeast two hybrid (within reference only) 38.1% not applicable

6) Randomizing datasets (significance of over lap)

We repeatedly randomized the high−throughput interactions and the reference set: For each set,
the exact number of binary interactions was maintained, but the two proteins forming a binary
interaction were randomly chosen from the complete set of yeast proteins. We assayed how many
of these interactions were overlapping (detected by more than one high−throughput method). In
15 independent randomizations, only 118.4 interactions were on average overlapping (compared
to 2455 overlapping interactions in the real data). 

7) Filter ing (ad Figure 2)

For some datasets, we show in Figure 2 raw and filtered data. For the yeast two−hybrid data, the
raw set is the combination of all interactions detected1,2. The filtered set is the ’core−data’ of
ref. 2. For the purified complexes based on the HMS−PCI approach, the raw data is the data in
Supplementary Table S1 of ref 4 (note that this table does not contain any ribosomal proteins).
The filtered set is the data from Supplementary Table S2 (which is derived from S1 by removing
unspecific interactors). For the complexes based on the TAP−tag, the raw data is the purifications



before removal of any unspecific interactors or ribosomal proteins. The filtered data is the data
contained in Supplementary Table S1 of ref 3. For Figure 2, we verified that the difference
between the HMS−PCI and TAP approaches is not simply caused by differences in bait selection:
When considering only those purifications where both approaches tested the same bait, the
numbers for accuracy (TAP vs HMS: 15.2% vs 2.9%) and coverage (6.1% versus 2.5%) show
the same trend as for the full datasets.
For the insilico data, the set with the lowest coverage is the one used for Figure 1. For the
medium coverage, we allowed for more redundancy in mapping orthologues between
prokaryotes and yeast − a maximum of 12 interactions between yeast−genes (instead of six) was
allowed for each pair of interacting orthologous clusters. Additionally, the mutual information
cutoff for the cooccurence interactions was lowered to 0.4125, while still filtering out the eight
most frequent phylogenetic patterns. Finally, for the third dataset (highest coverage but lowest
accuracy), we further lowered the stringency for gene−neighborhood interactions: normally, two
instances of gene neighborhood in diverged species are required. Here, we counted also single
instances, but only if the two orthologous groups were not too large (cutoff was 1060 for the
product of their sizes). 
For the interactions predicted by correlated mRNA expression (synexpression), interactions were
computed as in Figure 1, but various pearson correlation coefficients were used as cutoffs: they
range from 0.6 (lowest coverage) to 0.35 (best coverage), in steps of 0.05 

8) mRNA abundance (ad Figure 3)

We relied on a genome−wide analysis of mRNA abundances in yeast20. The raw data of this
analysis can be downloaded here: http://web.wi.mit.edu/young/expression/transcriptome.html.
We used this data to separate the yeast genome into 10 bins of equal size, sorted according to
mRNA abundance (for about 10% of the yeast genome, mRNA−abundance data is not available
from ref 20. These genes are most likely not expressed at all or were not measured). For each
interaction dataset and each bin, we then counted how many interactions had at least one partner
belonging to the bin. Here, each binary interaction is counted twice − once for partner A, and
once for partner B. We do not show the data for correlated mRNA expression, because we found
the result to be strongly dependent upon the similarity measure chosen for analysis. When
choosing euklidian distance as a similarity measure, correlated mRNA showed a bias for strongly
expressed genes, when using the pearson correlation coefficient, it did not.

9) Protein localizations (ad Figure 4)

We derived protein localizations from the MIPS15 and TRIPLES21 databases. In cases where both
databases have an entry for a protein, we prioritize MIPS (it is based on literature information).
We parsed 2342 protein localizations from MIPS, and an additional 1511 from TRIPLES.



10) A bias towards well−conserved proteins

We separated the yeast genome into four
classes according to the conservation of the
genes in other species. To check for
conservation in prokaryotes ("multi
kingdom"), we used the COG database. The
other three classes are:
a) eukaryotes − H. sapiens, D.
melanogaster, C. elegans and A. thaliana 
b) Fungi only − S. pombe and C. albicans 
c) yeast only. 
The presence of a gene in any of these
species was concluded from bi−directional
best hits in Swiss−Waterman searches,
using 0.01 as a cutoff. 
The resulting classification of the yeast
genome is available in Table S2.

11) A detailed look at the over lap between TAP and HMS−PCI

When analyzing the overlap between the TAP and HMS−PCI approaches, limiting the analysis to
the shared baits is insufficient. Similar complexes are often detected by both methods, even when
using different baits as entry−points. This ’ reverse tagging’ complementarity of the individual
purifications is a general advantage of the system. Check Table S3 for a sorted list of overlapping
purifications. The largest overlap between two purifications is 18 shared proteins. 
Other numbers characterizing the overlap: 
1379 proteins are touched by TAP (filtered set) 
1578 proteins are touched by HMS−PCI (filtered set) 
659 proteins are touched by both. Note that the TAP approach specifically lists proteins that do
not detect any interactions (singletons), whereas HMS−PCI filters these from their dataset. 
among the shared proteins, HMS−PCI detects 9005 connections, TAP 6285. 
the overlap is 1728 interactions, i.e. 27.5% of the TAP data overlap with 19.2% of the HMS−PCI
data. 
 
When measuring how similar the purifications are in terms of the number of shared proteins, the
overlap is more difficult to define. Which purifications to compare with which? 
We chose an approach in which we, for each purification, determined the ’best matching’
purification in the other dataset (considering only those that shared at least one protein. 404 TAP
purifications share at least one protein with the HMS−PCI purifications, and 399 HMS−PCI
purifications share at least one protein with the TAP purifications). Among those, on average
38.8 % of the TAP data overlap with 31.6 % of the HMS−PCI data. When only comparing those
purifications that share a bait (of which there are 94), the overlap stands at 42.4 % of the TAP
data and 33.0 % of the HMS−PCI data. This is when including the baits as shared proteins
(overlap) − when counting only proteins other than the baits, the numbers are 29.3 % and 18.0
%, respectively. 
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12) TAP/HMS−PCI: technical differences

HMS−PCI approach4

+ high analytical depth through use of LC−MS/MS on every band.
+ one−step purification: more transient interactions.
+ can get more baits to work.
+ can overexpress to detectable amounts if needed.
+ short term induction of expression: good if modified bait is toxic.
+ expression from plasmids: not limited to yeast proteins.
− artifacts due to overexpression (stoichiometry may be changed).
− one−step purification: more background.
− slow and more expensive MS approach.
− untagged protein still present in the genome: possible competition for binding partners

TAP approach3

+ endogenous promoter: wild−type expression level, stoichiometry of binding partners largely
maintained.

+ two−step purification, very mild conditions: high sensitivity and specificity of purifications.
+ conditions more homogenous (no specific induction necessary).
+ fast and sensitive MS approach (MALDI−TOF, can detect proteins at 15 copies per cell).
+ genomic integration: no untagged version of protein present.
− two−step purification: longer, may wash off transient binding partners.
− endogenous promoter: failure if expression is below certain threshold.
− technical bias against proteins below 10 kD (MS, tagging, etc...)

13) Combination of high−throughput data

Table S4 contains a compilation of all high−throughput interactions studied here. Binary
interactions are shown, sorted according to confidence − high confidence interactions are shown
first. 
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