Bork Group

The WW domain: a protein module that binds proline-rich or proline-containing ligands

EMBL

SELECTED REFERENCES WITH A BRIEF COMMENT ON THEIR RELATIVE SIGNIFICANCE

  • First delineation of the WW domain by computer-aided analysis of protein sequences

  • Bork , P., and Sudol, M. (1994)
    The WW domain: a signalling site in dystrophin?
    TiBS, 19, 531-533. [PMID 7846762]

  • First identification of the ligand to the WW domain and the definition of the domain as module that binds proline-rich motifs

  • Chen, H., and Sudol, M. (1995)
    The WW domain of yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules.
    Proc. Natl. Acad. Sci. USA 92, 7819-7823. [PMID 7644498]

  • First structure of the WW domain in complex with its target peptide

  • Macias, M. J.
    , Hyvonen, M., Baraldi, E., Schultz, J., Sudol, M., Saraste, M., and Oschkinat, H. (1996)
    Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide.
    Nature, 382, 646-649 [PMID 8757138]

  • Definition of other proline-rich ligands

  • Ermekova, K.S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T., and Sudol, M. (1997)
    The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled.
    J. Biol. Chem. 272, 32869-32877. [PMID 9407065]

    Bedford, M.T., Chan, D.C., and Leder, P. (1997)
    FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands.
    EMBO, J., 16, 2376-2383. [PMID 9171351]

    Komuro , A., Saeki, M., and Kato, S. (1999)
    Association of two nuclear proteins, Npw38 and NpwBP, via the interaction between the WW domain and a novel proline-rich motif containing glycine and arginine.
    J. Biol. Chem., 274, 36513-36519. [PMID 10593949]

    Bedford, M.T., Sarbassova, D., Xu, J., Leder, P., and Yaffe, M.B. (2000)
    A novel pro-Arg motif recognized by WW domains.
    J. Biol. Chem. 275, 10359-10369. [PMID 10744724]

    Chang, A., Cheang, S., Espanel, X., and Sudol, M. (2000)
    Rsp5 WW domains interact directly with the carboxy-terminal domain of RNA Polymerase II.
    J. Biol. Chem. In press. [PMID 10781604]

  • Other structures of WW domains

  • Ranganathan, R., Lu, K.P., Hunter, T., and Noel, J.P. (1997)
    Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent.
    Cell, 89, 875-886. [PMID 9200606]

    Macias, M.J., Gervais, V., Civera, C ., and Oschkinat, H. (2000)
    Structural analysis of WW domains and design of a WW prototype.
    Nature Struct. Biol., 7, 375-379. [PMID 10802733].

    Huang, X., Poy, F., Zhang, R., Joachimiak, A., Sudol, M., and Eck, M.J. (2000)
    Structure of a WW domain containing fragment of dystrophin in complex with beta-dystroglycan. Nature Struct. Biol., 7(8), 634-638. [PMID 10932245].

    Verdecia, M.A., Huang, H.K., Bowmanm, M.E., Lu, K.P., Hunter, T., and Noel, J.P. (2000)
    Structural and energetic basis for phosphoserine-proline recognition by WW domains.
    Nature Struct. Biol. 7(8), 639-643. [PMID 10932246].

  • WW domains and human diseases
  • LIDDLE SYNDROME
    Schild, L., Lu, Y., Gautschi, I., Schneeberger, E., Lifton, R.P., and Rossier, B.C. (1996)
    Identification of a PY motif in the epithelial Na channel subunits as target sequence for mutations causing channel activation found in Liddle syndrome.
    EMBO, J., 15, 2381-2387 [PMID 8665845].

    Staub, O., Dho, S., Henry, P., Correa, J., Ishikawa, T., McGlade, J., and Rotin, D. (1996)
    WW domains of Nedd4 bind to proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome.
    EMBO, J. 15,2371-2380. [PMID 8665844].

    MUSCULAR DYSTROPHY
    Rentschler, S., Linn, H., Deininger, K., Bedford, M.T., Espanel, X., and Sudol, M. (1999)
    The WW domain of dystrophin requires EF-hands region to interact with beta-dystroglycan.
    Biol. Chem., 380, 431-442. [PMID 10355629].

    James, M., Nuttall, A., Ilsley, J.L., Ottersbach, K., Tinsley, J.M., Sudol, M, and Winder, S.J. (2000)
    Adhesion-dependent tyrosine phosphorylation of beta-dystroglycan regulates its interaction with utrophin.
    J. Cell. Sci., 113, 1717-1726. [PMID 10769203].

    Di Vignano, T.A., Di Zenzo, G., Sudol, M., Cesareni, G., and Dente, L. (2000)
    Contribution of different modules in the utrophin carboxy-terminal region to the formation and regulation of the DAP complex.
    FEBS Lett., 471, 229-234. [PMID 10767429].

    Huang et al., (see other Structure of WW domains)

    ALZHEIMER'S DISEASE
    Russo, T., Faraonio, R., Minopoli, G., De Candia, P., De Renzis, S., and Zambrano, N. (1998)
    Fe65 and the protein network centered around the cytosolic domain of the Alzheimer's beta-amyloid percursor protein.
    FEBS Lett., 434, 1-7. [PMID 9738440].

    Lu P.J., Wulf, G., Zhou, X.Z., Davies, P., and Lu, K.P. (1999)
    The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein.
    Nature, 399, 784-788. [PMID 10391244].

    Guenette , S,Y., Chen, J., ferland, A., Haass, C., Capell, A., and Tanzi, R.E. (1999)
    hFE65L influences amyloid precursor protein maturation and secretion.
    J. Neurochem., 73, 985-993. [PMID 10461887].

    HUNTINGTON DISEASE
    Faber, P.W., Barnes, G.T., Srinidhi, J.,Chen, J., Gusella, J.F., and MacDonald, M.E. (1998)
    Huntingtin interacts with a family of WW domain proteins.
    Hum. Mol. Genet. 7, 1463-1474. [PMID 9700202].

    Wood, J.D., Yuan, J., Margolis, R.L., Colomer, V., Duan, K., Kushi, J., Kaminsky, Z., Kleiderlein, J.J., Sharp, A.H., and Ross, C.A. (1998)
    Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins.
    Mol. Cell Neurosci., 11, 149-160. [PMID 9647693].

    Waragi, M., Lammers, C.H., Takeuchi, S., Imafuku, I., Udagawa, Y., Kanazawa, I., Kawabata, M., Mouradian, M.M., and Okazawa, H. (1999)
    PQBP-1, a novel polyglutamine tract-binding protein, inhibits transcription activation by Brn-2 and affects cell survival.
    Hum. Mol. Genet. , 8, 977-987 [PMID 10332029].

    CANCER
    Sudol, M. (1996)
    Structure and function of the WW domain.
    Prog. Biophys. Mol Biol. 65, 113-132. [PMID 9029943].

    Dong, G., Loukinova, E., Smith, C.W., Chen, Z., and Van Waes, C. (1997)
    Genes differentially expressed with malignant transformation and metastataic tumor progression of murine squamous cell carcinoma.
    J. Cell. Biochem., 28 and 29, 90-100. [PMID 9589353].

    Anan, T., Nagata, Y., Koga, H., Honda, Y., Yabuki, N., Miyamoto, C., Kuwano, A., Matsuda, I., Endo, F., Saya, H., and Nakao, M. (1998)
    Human ubiquitin-protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin-conjugating enzymes.
    Genes Cells, 3, 751-763. [PMID 9990509].

    Bednarek , A.K., Laflin, K.J., Daniel, R.L., Liao, Q., Hawkins, K.A., and Aldaz, C.M. (2000)
    WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer.
    Cancer Res., 60, 2140-2145. [PMID 10786676].

  • WW domain as a model structure for study of beta-sheet folding and stability
  • Kortemme, T., Ramirez-Alvarado, M., and Serrano, L. (1998)
    Design of a 20-amino acid, three-stranded beta-sheet protein.
    Science, 281, 253-2567. [PMID 9657719].

    Ibragimova, G.T., and Wade, R.C. (1999)
    Stability of the beta-sheet of the WW domain: A molecular dynamics simulations study.
    Biophys. J., 77, 2191-2198 [PMID 10512838].

    Crane, J.C., Koepf, E.K., J.W., and Gruebele, M. (2000)
    Mapping of transition state of the WW domain beta-sheet.
    J. Mol. Biol., 298, 283-292 [PMID 10764597].

  • Other references with significant impact on the WW domain field
  • First documentation of the potential role of the WW domain in retroviral budding
    Garnier, L., Wills, J.W., Verderame, M.F., and Sudol, M. (1996)
    WW domains and retrovirus budding.
    Nature, 381, 744-745 [PMID 8657277].

    Functional description of a plant protein with WW domain
    Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., and Dean, C. (1997)
    FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains.
    Cell, 89, 737-745. [PMID 9182761].

    Elegant report on designing inhibitors of WW domains using N-substituted peptides
    Nguyen, J.T., Turck, C.W., Cohen, F.E., Zuckermann, R.N., and Lim, W.A. (1998)
    Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors.
    Science, 282, 2088-2092. [PMID 9851931].

    Identification of a WW-like sequence in the PDGF receptor
    Irusta, P.M., and DiMaio, D., (1998)
    A single amino acid substitution in a WW-like domain of diverse members of the PDGF receptor subfamily of tyrosine kinases causes constitutive receptor activation.
    EMBO, J., 17, 6912-6923. [PMID 9843497].

    Most direct documentation of WW domain acting as a transcriptional activator
    Yagi, R., Chen, L.F., Shigesada, K., Murakami, Y., and Ito, Y. (1999)
    A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator.
    EMBO, J., 18, 2551-2562. [PMID 10228168].

    Changing ligand binding specificity of WW from Group I to that of Group II
    Espanel, X., and Sudol, M. (1999)
    A single point mutation in a group I WW domain shifts its specificity to that of group II WW domains.
    J. Biol. Chem. 274, 17284-17289. [PMID 10358088].

    A subgroup of WW domain binds ligands that contain phosphoserine or phosphothreonine
    Lu, P.J., Zhou, X.Z., Shen, M., and Lu, K.P. (1999)
    Function of WW domains as phosphoserine- or phosphothreonine-binding modules.
    Science, 283, 1325-1328. [PMID 10037602].

    The FF domain occurs frequently together with the WW domain
    Bedford, M.T., and Leder, P. (1999)
    The FF domain: a novel motif that often accompanies WW domains.
    TiBS, 24, 264-265. [PMID 10390614].

    Expression of an adaptor protein with WW domain is altered in brains of Alzheimer's patients
    Hu, Q., Jin, L.W., Starbuck, M.Y., and Martin, G.M. (2000)
    Broadly altered expression of the mRNA isoforms of FE65, a facilitator of beta amyloidogenesis, in Alzheimer cerebellum and other brain regions.
    J. Neurosc. Res. 60, 73-86. [PMID 10723070].

    United States Patents
    Sudol, M., Bork, P., and Chen, H. (2000)
    SH3 kinase domain associated protein, a signalling domain therein, nucleic acids encoding the protein and the domain, and diaganostic and therapeutic uses of thereof.
    US Patents # 6,022,740 and 6,034,212.


    Last modified May 25, 2000.